Sains Malaysiana 52(7)(2023): 2009-2020

http://doi.org/10.17576/jsm-2023-5207-10

 

Effects of Cobalt-60 Gamma on Microbial Elimination and Phytochemical Constituents in Orthosiphon aristatus (Misai Kucing) (Blume) Miq.

(Kesan Gamma Kobalt-60 terhadap Penghapusan Mikrob dan Konstituen Fitokimia pada Orthosiphon aristatus (Misai Kucing) (Blume) Miq.)

 

SYAFIQAH MHD JAMAL1, HASNAH BAHARI2, DARYL JESUS ARAPOC3, MUHAMMAD AKIF ADNAN4, IMRAN JAZARY MAD DIAH4 & AZMIZA SYAWANI JASNI1*

 

1Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia

4KPJ Healthcare University College, Lot PT 17010 Persiaran Seriemas, Kota Seriemas, 71800 Nilai, Negeri Sembilan, Malaysia

 

Received: 13 October 2022/Accepted: 15 June 2023

 

Abstract

Medicinal plants are used for various purposes, however, the presence of microorganisms in them is the main safety risk. The study aimed to evaluate the effects of gamma irradiation on microbial contaminants and phytochemical constituents of Orthosiphon aristatus (Blume) Miq. The plant was irradiated using doses of 3, 6, 9, and 12 kGy and the microbial contamination was assessed using phenotypic and genotypic analyses. The qualitative screening using chemical tests was performed to identify the presence of important phytochemical constituents including alkaloids, saponins, flavonoids, tannins, steroids and triterpenes. Results showed that the total microbial counts in O. aristatus were significantly reduced (P < 0.05) following irradiations at 3- and 6 kGy. Pathogenic bacteria were not detected in O. aristatus after irradiation at 6 kGy while the phytochemical constituents were conserved. In conclusion, gamma irradiation has significantly reduced and eliminated microbial contaminants and preserved the phytochemical constituents of O. aristatus. This study highlights the use of a low and specific dose, 6 kGy that is effective to reduce and eliminate microbial contaminants in O. aristatus.

 

Keywords: Cobalt-60; gamma irradiation; medicinal plants; microbial contaminants; Orthosiphon aristatus; phytochemical constituents

 

Abstrak

Tumbuhan ubatan telah digunakan untuk pelbagai tujuan, namun, kandungan mikroorganisma dalam tumbuhan tersebut merupakan risiko keselamatan utama. Kajian ini bertujuan untuk menilai kesan sinaran gamma terhadap kandungan mikrob dan kandungan fitokimia dalam Orthosiphon aristatus (Blume) Miq. Tumbuhan tersebut telah didedahkan kepada sinaran gamma menggunakan dos iaitu 3, 6, 9 dan 12 kGy dan kandungan mikrob telah dinilai menggunakan analisis fenotip dan genotip. Ujian kualitatif menggunakan ujian kimia telah dijalankan untuk menentukan kandungan fitokimia utama termasuklah alkaloid, saponin, flavonoid, tannin, steroid dan triterpin. Keputusan menunjukkan bahawa jumlah mikrob dalam O. aristatus telah berkurang secara ketara (P < 0.05) selepas penyinaran pada 3- dan 6-kGy. Bakteria patogen tidak dikesan dalam O. aristatus selepas penyinaran pada 6 kGy, sementara kandungan fitokimianya dapat dikekalkan. Sebagai kesimpulan, penyinaran gamma telah dapat mengurang dan menghapuskan kandungan mikrob dan mengekalkan kandungan fitokimia dalam O. aristatus. Kajian ini memfokuskan penggunaan dos yang rendah dan khusus iaitu 6 kGy yang berkesan untuk mengurangkan dan menghapuskan kandungan mikrob dalam O. aristatus.

 

Kata kunci: Kandungan fitokimia; kandungan mikrob; kobalt-60; Orthosiphon aristatus; sinaran gamma; tumbuhan ubatan

 

REFERENCES

Abdel-Wahab, S.I., Mohan, S., Elhassan, M.M., Al-Mekhlafi, N., Mariod, A.A., Abdul, A.B., Abdulla, M.A. & Alkharfy, K.M. 2011. Antiapoptotic and antioxidant properties of Orthosiphon stamineus benth (Cat’s Whiskers): Intervention in the Bcl-2 mediated apoptotic pathway. Evidence-Based Complementary and Alternative Medicine 2011: 15676. DOI:10.1155/2011/156765

Abdullah, F.I., Chua, L.S., Mohd Bohari, S.P. & Sari, E. 2020. Rationale of Orthosiphon aristatus for healing diabetic foot ulcer. National Product Communications 15(9): 1-3. DOI: 10. 1177/ 1934 578X 20953308

Ahmad, F., Zaidi, M.A.S., Sulaiman, N. & Majid, F.A.A. 2015. Issues and challenges in the development of the herbal industry in Malaysia. Prosiding PERKEM 10: 227-238. https://www.ukm.my/fep/perkem/pdf/perkem2015/PERKEM_2015_3A1.pdf

Allen, P., Bennett, K. & Heritage, B. 2014. SPSS Statistics Version 22: A Practical Guide. 3rd ed. United Kingdom, EMEA.

Aly, A., Maraei, R., Rezk, A. & Diab, A. 2022. Phytochemical constitutes and biological activities of essential oil extracted from irradiated caraway seeds (Carum carvi L.). International Journal of Radiation Biology 99(2): 318-328. DOI: 10.1080/09553002.2022.2078004

Ashraf, K., Sultan, S. & Adam, A. 2018. Orthosiphon stamineus Benth. is an outstanding food medicine: Review of phytochemical and pharmacological activities. Journal of Pharmacy and Bioallied Sciences 10(3): 109-118. DOI: 10.4103/jpbs.JPBS_253_17

Bhattacharyya, C., Bakshi, U., Mallick, I., Mukherji, S., Bera, B. & Ghosh, A. 2017. Genome-guided insights into the plant growth promotion capabilities of the physiologically versatile Bacillus aryabhataii strain AB211. Frontiers in Microbiology 8: 1-16. DOI: https://doi.org/10.3389/fmicb.2017.00411

Canadian Food Inspection Agency. 2019. Bacterial pathogens in dried herbs and dried teas: 1 April, 2014 to March 31, 2018. inspection.gc.ca

CBI Ministry of Office Affairs. 2019. Exporting fresh herbs to Europe. https://www.cbi.eu/node/2297/pdf/

Chai, T.T., Wong, F.C., Abd Manan, F., Ooh, K.F. & Mohd Ismail, N.I. 2014. Orthosiphon aristatus: A review of traditional uses, phytochemical profile and pharmacological properties. 1st ed. New Delhi: Daya Publishing.

Chua, L.S., Lau, C.H., Chew, C.Y., Ismail, N.I.M. & Soontorngun, N. 2018. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives. Phytomedicine 39: 49-55. DOI: 10.1016/j.phymed.2017.12.015

Chung, Y.S., Choo, B.K.M., Ahmed, P.K., Othman, I. & Shaikh, M.F. 2020. A systematic review of the protective actions of cat’s whiskers (Misai kucing) on the central nervous system. Front Pharmacology 11: 692. DOI: 10.3389/fphar.2020.00692

Cote, C.K., Buhr, T., Bernhards, C.B., Bohmke, M.D., Calm, A.M., Esteban-Trexler, J.S., Hunter, M., Katoski, S.E., Kennihan, N., Klimko, C.P., Miller, J.A., Minter, Z.A., Pfarr, J.W., Prugh, A.M., Quirk, A.V., Rivers, B.A., Shea, A.A., Shoe, J.L., Sickler, T.M., Young, A.A., Fetterer, D.P., Welkos, S.L., Bozue, J.A., McPherson, D., Fountain 3rd, A.W. & Gibbons, H.S. 2018. A standard method to inactivate Bacillus anthracis spores to sterility via gamma irradiation. Applied and Environmental Microbiology 84(12): 1-19. DOI: 10.1128/AEM.00106-18

European Pharmacopoeia. 2010. Microbiological Examination of Non-Sterile Products. drugfuture.com/pharmacopoeia/EP7/DATA/206/2E

Fakruddin, M., Sultana, R., Hossain, M.N., Rahaman, M.M., Islam, M.K. & Ahmed, M.M. 2017. Occurrence of ingression of Salmonella spp. in betel leaf (Piper betle L.). International Journal of Food Contamination 4: 6. DOI 10.1186/s40550-017-0051-0

Fan, B., Wang, C., Song, X., Ding, C., Wu, L., Wu, H., Gao, X. & Borriss, R. 2018. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology 9: 1-14. DOI: https://doi.org/10.3389/fmicb.2018.02491

Food Drug Administration (FDA). 2016. Hazard Analysis and Risk-Based Preventive Controls for Human Food: Draft Guidance for Industry. https://www.fda.gov/media/99598/download

George, A., Chinnappan, S., Choudhary, Y., Choudhary, V.K., Bommu, P. & Wong, H.J. 2015. Effects of a proprietary standardized Orthosiphon stamineus ethanolic leaf extract on enhancing memory in Sprague Dawley rats possibly via blockade of adenosine A2A receptors. Evidence-Based Complementary and Alternative Medicine 2015: 375837. DOI: http://dx.doi.org/10.1155/2015/375837

Hazekamp, A. 2016. Evaluating the effects of gamma-irradiation for decontamination of medicinal cannabis. Frontiers in Pharmacology 7(108): 1-12. DOI: https://doi.org/10.3389/fphar.2016.00108

Jamshidi-Kia, F., Lorigooini, Z. & Amini-Khoei, H. 2018. Medicinal plants: Past history and future perspective. Journal of Herbmed Pharmacology 7(1): 1-7. DOI: 10.15171/jhp.2018.01

Kamal, T., Nazir, N.H., Parvej, M.S., Rahman, M.T., Rahman, M., Khan, M.F.R., Ansari, W.K., Ahamed, M.M., Ahmed, S., Hossen, M.L., Panna, S.N. &amp; Rahman, M.B. 2018. Remedy of contamination of multidrug resistant Salmonella and Escherichia coli from betel leaves (Piper betle) keeping them fresh for long time. Journal of Advanced Veterinary and Animal Research 5(1): 73-80. DOI: https://doi.org/10.5455/javar.2018.e250

Khawory, M.H., Sain, A.A., Rosli, M.A.A., Ishak, M.S., Noordin, M.I. & Wahab, H.A. 2020. Effects of gamma radiation treatment on three different medicinal plants: Microbial limit test, total phenolic content, in vitro cytotoxicity effect and antioxidant assay. Applied Radiation and Isotopes 157: 1-7. DOI: https://doi.org/10.1016/j.apradiso.2019.109013

Kume, T. & Todoriki, S. 2013. Food irradiation in Asia, the European Union and the United States: A status update. Radioisotopes 62(5): 291-299. DOI: https://doi.org/10.3769/radioisotopes.62.291

Lorenzo, J.M., Munekata, P.E., Dominguez, R., Pateiro, M., Saraiva, J.A. &amp; Franco, D. 2018. Main groups of microorganisms of relevance for food safety and stability: General aspects and overall description. Innovative Technologies for Food Preservation 53-107. DOI: https://doi.org/10.1016/B978-0-12-811031-7-00003-0

Maherani, B., Hossain, F., Criado, P., Ben-Fadhel, Y., Salmieri, S. & Lacroix, M. 2016. World market development and consumer acceptance of irradiation technology. Foods 5(4): 79. DOI: 10.3390/foods5040079

Malaysian Standard. 2005. Code of good irradiation practice Part 9: Spices, herbs and vegetable seasonings for the control of pathogens and microflora (first revision). Department of Standard Malaysia. pp. 1-14. https://law.resource.org/pub/my/ibr/ms.1265.9.2005.pdf

Mohd-Hafizudin, Z., Roslina, A., Nor Amna Aliah, M.N. & Nik Rahimah, N.O. 2019. Transformation of Herbal Industry in Malaysia. ap.fftc.agnet.org/ap_db.php?topic=22

Morehouse, K.M. & Komolprasert, V. 2004. Irradiation of food and packaging. American Chemical Society 875: 1-11. DOI: 10.1021/bk-2004-0875.ch001

Mostafavi, H.A., Fathollahi, H., Motamedi, F. & Mirmajlessi, S.M. 2010. Food irradiation: Applications, public acceptance and global trade. African Journal of Biotechnology 9(20): 2826-2833.  DOI: https://doi.org/10.5897/AJB2010.000-3109

Narayanaswamy, R. & Ismail, I.S. 2015. Cosmetic potential of Southeast Asian herbs: An overview. Phytochemical Review 14: 419-428. DOI: https://doi.org/10.1007/s11101-015-9396-2

Nathawat, N.S., Joshi, P., Chhipa, B.G., Hajare, S., Goyal, M., Sahu, M.P. & Singh, G. 2013. Effect of gamma radiation on microbial safety and nutritional quality of kachri (Cucumis callosus). Journal of Food Science and Technology 50(4): 723-730.  DOI: 10.1007/s13197-011-0380-6

National Pharmaceutical Regulatory Agency (NPRA). 2016. Drug Registration Guidance Document (DRGD). npra.gov.my/index.php/en/drug-registration-guidance-documents-drgd-e-book

Naveed, S., Rizwan, E. & Sajid, A. 2017. Effect of gamma irradiation on phytochemical content and antimicrobial activities of selected herbs. ChemXpress. 11(1): 132. DOI: 10.37532/2320 -1967.2020.12(2).132

Ncube, N.S., Afolayan, A.J. & Okoh, A.I. 2008. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current methods and future trends. African Journal of Biotechnology 7(12): 1797-1806. DOI: 10.5897/AJB07.613

Nithya, A. & Babu, S. 2017. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India. BMC Microbiology 17(1): 64. DOI: https://doi.org/10.1186/s12866-017-0974-x

Radulovic, N.S., Blagojovic, P.D., Stojanovic-Radic, Z.Z. & Stojanovic, N.M. 2013. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Current Medicinal Chemistry 20: 932-952. DOI: https://doi.org/10.2174/0929867311320070008

Roberts, P.B. 2014. Food irradiation is safe: Half a century of studies. Radiation Physics and Chemistry 105: 78-82. DOI: https://doi.org/10.1016/j.radphyschem.2014.05.016

Sajjabut, S., Pewlong, W., Eamsiri, J., Chookaew, S., Kentong, K. & Maikaeo, L. 2019. Induction of gamma irradiation for microorganism’s decontamination of dried lotus pollen (Nelumbo nucifera). International Nuclear Science and Technology Conference 1285: 1-5. DOI:10.1088/1742-6596/1285/1/012001

Schottroff, F., Lasaws, T., Stupak, M., Hajslova, J., Fooster, T. & Jager, H. 2021. Decontamination of herbs and spices by gamma irradiation and low-energy electron beam treatments and influence on product characteristics upon storage. Journal of Radiation Research and Applied Sciences 1(14): 380-395. DOI: https://doi.org/10.1080/16878507.2021.1981112

Selvamohan, T., Ramadas, V. & Kishore, S.S. 2012. Antimicrobial activity of selected medicinal plants against some selected human pathogenic bacteria. Advances in Applied Science Research 3(5): 3374-3381. https://www.imedpub.com/articles/antimicrobial-activity-of-selected-medicinal-plants-against-some-selectedhuman-pathogenic-bacteria.pdf

Sutton, S.S., Jumper, M., Shah, A. & Edun, B. 2017. Clostridium tertium peritonitis and concurrent bacteremia in a patient with a history alcoholic cirrhosis. Journal of Investigative Medicine High Impact Case Reports 5(3): 2324709617731457.  DOI: 10.1177/2324709617731457

Wang, T., Costa, V., Jenkins, S.G., Hartman, B.J. & Westblade, L.F. 2019. Acinetobacter radioresistens infection with bacteremia and pneumonia. IDCases 15: e00495. DOI:10.1016/j.idcr.2019.e00495

World Health Organization (WHO). 2012. Supplementary Information 5.3.7 Microbiological Quality of Non-Sterile Products: Recommended Acceptance Criteria for Pharmaceutical Preparations. who.int/medicines/publications/pharmacopoeia/2012-04-03microbialpurity_QAS11-41_FINAL.pdf

Yam, M.F., Lim, C.P., Ang, L.F., Por, L.Y., Wong, S.T., Asmawi, M.Z., Basir, R. & Ahmad, M. 2013. Antioxidant and toxicity studies of 50% methanolic extract of Orthosiphon stamineus Benth. Biomedical Research International 2013: 351602. DOI:10.1155/2013/351602

Yamada, K., Kashiwa, M., Arai, K., Satoyoshi, K. & Nishiyama, H. 2017. Pantoea calida bacteremia in an adult with end-stage stomach cancer under inpatient care. Journal of Infection and Chemotherapy 23: 407-409. DOI: 10.1016/j.jiac.2017.01.001

Zantar, S., Haouzi, R., Chabbi, M., Laglaoui, A., Mouhib, M. & Zerrouk, M.H. 2015. Effect of gamma irradiation on chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils. Radiation Physics and Chemistry 115: 6-11. DOI: 10.1016/j.radphyschem.2015.05.019

 

*Corresponding author; email: azmiza@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous